Electronic interactions in illuminated carbon dots/MoS2 ensembles and electrocatalytic activity towards hydrogen evolution

Chem. A  Eur. J. 2018, 24(41), 10468-10474.

OPEN ACCESS CSIC

We report on the preparation, characterization and photophysical and electrocatalytic properties of carbon dots (CDs)/MoS2 ensembles. Based on electrostatic interactions, ammonium functionalized MoS2, prepared upon reaction of 1,2‐dithiolane tert‐butyl carbamate with MoS2 followed by acidic deprotection, was coupled with CDs bearing multiple carboxylates on their periphery as derived upon microwave‐assisted polycondensation of citric acid and ethylenediamine followed by alkaline treatment. Insights into electronic interactions between the two species within CDs/MoS2 emanated from absorption and photoluminescence titration assays. Efficient fluorescence quenching of CDs by MoS2 was observed and attributed to photoinduced electron/energy transfer as the decay mechanism for the transduction of the singlet excited state of CDs. Finally, the electrocatalytic performance of CDs/MoS2 was assessed towards the hydrogen evolution reaction and found superior as compared to that owed to the individual CDs species.