Control of microstructure and surface chemistry of graphene aerogels via pH and time manipulation in hydrothermal method

Nanoscale , 2018, 10 , 3526

Three-dimensional graphene aerogels of controlled pore size have emerged as important platform for several applications such as energy storage or oil-water separation. The aerogels of reduced graphene oxide are mouldable and lightweight, with porosity up to 99.9% consisting mainly of macropores. Graphene aerogels preparation by self-assembling in liquid phase is a promising strategy due to its tunability and sustainability. For graphene aerogels prepared by hydrothermal method, it is known that the pH value has an impact on its properties but it is unclear how the pH affects the autoassembling process leading to the final properties. We have monitored the time evolution of the chemical and morphological properties of aerogel as a function of initial pH value. In the hydrothermal treatment process, the hydrogel is precipitated earlier and with less oxygen content for basic pH (~ 13 wt% O …